脑片培养技术及其在药物研发中的应用进展

李伟瀚, 王月华, 杜冠华

中国药学杂志 ›› 2020, Vol. 55 ›› Issue (13) : 1068-1071.

PDF(2570 KB)
PDF(2570 KB)
中国药学杂志 ›› 2020, Vol. 55 ›› Issue (13) : 1068-1071. DOI: 10.11669/cpj.2020.13.003
综述

脑片培养技术及其在药物研发中的应用进展

  • 李伟瀚, 王月华*, 杜冠华*
作者信息 +

Progress of Brain Slice Culture Technology and Its Application in Drug Research and Development

  • LI Wei-han, WANG Yue-hua*, DU Guan-hua*
Author information +
文章历史 +

摘要

脑片培养是一种离体研究脑内神经细胞分子机制及电生理活动的重要实验技术,是研究脑内生理病理过程的重要工具。近年来,随着脑片培养技术及检测方法的不断提高,脑片存活时间大大延长,检测手段更加多样化,脑片培养技术在生物医药领域应用范围不断扩大。笔者综述脑片培养技术的进展,讨论脑片培养技术在神经疾病模型建立及药物研发中的应用,脑片培养技术对神经科学研究及药物研发具有重要意义。

Abstract

Brain slice culture is an important experimental technique for studying the molecular mechanism and electrophysiological activities of brain ex vivo. It is also an important tool for studying the physiological and pathological processes in brain. Recently, with the continuous improvement of brain slice culture technology and detection methods, the survival time of brain slices has been greatly prolonged, monitoring methods have become more diversified, and the application of brain slice culture technology has been expanding in biomedical field. In this article, the progress of brain slice culture technology is reviewed. The application of brain slice culture technology in the establishment of neurological disease model and drug development is discussed. Brain slice culture technology is of great significance to neuroscience research and drug development.

关键词

脑片培养 / 药物发现 / 神经科学 / 神经退行性疾病

Key words

brain slice culture / drug discovery / neuroscience / neurodegenerative diseases

引用本文

导出引用
李伟瀚, 王月华, 杜冠华. 脑片培养技术及其在药物研发中的应用进展[J]. 中国药学杂志, 2020, 55(13): 1068-1071 https://doi.org/10.11669/cpj.2020.13.003
LI Wei-han, WANG Yue-hua, DU Guan-hua. Progress of Brain Slice Culture Technology and Its Application in Drug Research and Development[J]. Chinese Pharmaceutical Journal, 2020, 55(13): 1068-1071 https://doi.org/10.11669/cpj.2020.13.003
中图分类号: R965   

参考文献

[1] HUMPEL C. Organotypic brain slice cultures: a review[J]. Neuroscience, 2015, 305:86-98.
[2] DOUSSAU F, DUPONT J L, NEEL D, et al. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders[J]. Expert Opin Drug Discov, 2017, 12(10):1011-1022.
[3] XIAO L, IDE R, SAIKI C, et al. Human dental pulp cells differentiate toward neuronal cells and promote neuroregeneration in adult organotypic hippocampal slices in vitro[J]. Int J Mol Sci, 2017, 18(8):doi:10.3390/ijms18081745.
[4] CAMERON M A, KEKESI O, MORLEY J W, et al. Prolonged incubation of acute neuronal tissue for electrophysiology and calcium-imaging[J]. J Vis Exp, 2017, 15(120):doi:10.3791/55396.
[5] BUSKILA Y, BREEN P P, TAPSON J, et al. Extending the viability of acute brain slices[J]. Sci Rep, 2014, 4:5309. doi:10.1038/srep05309.
[6] PACI P, GABRIELE S, RIS L. A new method allowing long-term potentiation recordings in hippocampal organotypic slices[J]. Brain Behav, 2017, 7(5):e00692. doi:10.1002/brb3.692.
[7] KILLIAN N J, VERNEKAR V N, POTTER S M, et al. A device for long-term perfusion, imaging, and electrical interfacing of brain tissue in vitro[J]. Front Neurosci, 2016, 10:135. doi: 10.3389/fnins.2016.00135.
[8] VICTOROV I V, LYJIN A A, ALEKSANDROVA O P. A modified roller method for organotypic brain cultures:free-floating slices of postnatal rat hippocampus[J]. Brain Res Brain Res Protoc, 2001, 7(1):30-37.
[9] LETELLIER M, SZIBER Z, CHAMMA I, et al. A unique intracellular tyrosine in neuroligin-1 regulates AMPA receptor recruitment during synapse differentiation and potentiation[J]. Nat Commun, 2018, 9(1):3979. doi:10.1038/s41467-018-06220-2.
[10] LIU J, PAN L, CHENG X, et al. Perfused drop microfluidic device for brain slice culture-based drug discovery[J]. Biomed Microdevices, 2016, 18(3):46. doi:10.1007/s10544-016-0073-z.
[11] KIM H, KIM E, PARK M, et al. Organotypic hippocampal slice culture from the adult mouse brain:a versatile tool for translational neuropsychopharmacology[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2013, 41(2):36-43.
[12] MASUCH A, VAN DER PIJL R, FUNER L, et al. Microglia replenished OHSC: a culture system to study in vivo like adult microglia[J]. Glia, 2016, 64(8):1285-1297.
[13] MILLER A P, SHAH A S, APERI B V, et al. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures[J]. PLoS One, 2017, 12(3):e0173167. doi:10.1371/journal.pone.0173167.
[14] OHIR K. Dopamine stimulates differentiation and migration of cortical interneurons[J]. Biochem Biophys Res Commun, 2019, 512(3):577-583.
[15] HWANG E S, KIM H B, CHOI G Y, et al. Acute rosmarinic acid treatment enhances long-term potentiation, BDNF and GluR-2 protein expression, and cell survival rate against scopolamine challenge in rat organotypic hippocampal slice cultures[J]. Biochem Biophys Res Commun, 2016, 475(1):44-50.
[16] SWEDA R, PHILLIPS A W, MARX J, et al. Glial-restricted precursors protect neonatal brain slices from hypoxic-ischemic cell death without direct tissue contact[J]. Stem Cells Dev, 2016, 25(13):975-985.
[17] ZHANG M Y, LIU M, HONG Z Y, et al. Research progress in the traditional Chinese medicine treatment of Alzheimer′s disease and the blood-brain barrier transporters[J]. Chin Pharm J (中国药学杂志),2018,53(7):490-495.
[18] NOVOTNY R, LANGER F, MAHLER J, et al. Conversion of synthetic A to in vivo active seeds and amyloid plaque formation in a hippocampal slice culture model[J]. J Neurosci, 2016, 36(18):5084-5093.
[19] HARWELL C S, COLEMAN M P. Synaptophysin depletion and intraneuronal Aβ in organotypic hippocampal slice cultures from huAPP transgenic mice[J]. Mol Neurodegener, 2016, 11(1):44. doi:10.1186/s13024-016-0110-7.
[20] CROFT C L, NOBLE W. Preparation of organotypic brain slice cultures for the study of Alzheimer′s disease[J]. F1000 Res, 2018, 7:592. doi:10.12688/f1000research.14500.2.
[21] MCCAUGHEY-CHAPMAN A, CONNOR B. Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system[J]. J Neurosci Methods, 2017, 277(3):83-87.
[22] TAO-CHENG J H. Stimulation induces gradual increases in the thickness and curvature of postsynaptic density of hippocampal CA1 neurons in slice cultures[J]. Mol Brain, 2019, 12(1):44. doi:10.1186/s13041-019-0468-x.
[23] MINAMI N, MAEDA Y, SHIBAO S, et al. Organotypic brain explant culture as a drug evaluation system for malignant brain tumors[J]. Cancer Med, 2017, 6(11):2635-2645.
[24] BRANCH S Y, CHEN C, SHARMA R, et al. Dopaminergic neurons exhibit an age-dependent decline in electrophysiological parameters in the MitoPark mouse model of Parkinson′s disease[J]. J Neurosci, 2016, 36(14):4026-4037.
[25] CROFT C L, CRUZ P E, RYU D H, et al. rAAV-based brain slice culture models of Alzheimer′s and Parkinson′s disease inclusion pathologies[J]. J Exp Med, 2019, 216(3):539-555.
[26] CHEN D K, GE Q F, WANG M L, et al. Effect of baicalin on oxygen-glucose deprivation/reperfusion-induced injury in mouse brain slices and cultured rat cortical neurons[J]. Chin Pharm J (中国药学杂志), 2006, 41(16):1234-1236.
[27] YAKOUB K M, LAZZARINO G, AMORINI A M, et al. Fructose-1,6-bisphosphate protects hippocampal rat slices from NMDA excitotoxicity[J]. Int J Mol Sci, 2019, 20(9):doi:10.3390/ijms20092239.
[28] BARRIA A. Preparation of organotypic slice cultures for the study of glutamate receptor function[J]. Methods Mol Biol, 2019, 1941(1):57-64.
[29] IUGHETTI L, LUCACCIONI L, FUGETTO F, et al. Brain-derived neurotrophic factor and epilepsy:a systematic review[J]. Neuropeptides, 2018, 72(6):23-29.
[30] MAGALHAES D M, PEREIRA N, ROMBO D M, et al. Ex vivo model of epilepsy in organotypic slices-a new tool for drug screening[J]. J Neuroinflammation, 2018, 15(1):203. doi:10.1186/s12974-018-1225-2.
[31] DRION C M, KOOIJMAN L, ARONICA E, et al. Curcumin reduces development of seizurelike events in the hippocampal-entorhinal cortex sliceculture model for epileptogenesis[J]. Epilepsia, 2019, 60(4):605-614.
[32] JONES R S, DA SILVA A B, WHITTAKER R G, et al. Human brain slices for epilepsy research:pitfalls, solutions and future challenges[J]. J Neurosci Methods, 2016, 260:221-232.
[33] MINAMI N, MAEDA Y, SHIBAO S, et al. Organotypic brain explant culture as a drug evaluation system for malignant brain tumors[J]. Cancer Med, 2017, 6(11):2635-2645.
[34] TAMURA R, MIYOSHI H, SAMPETREAN O, et al. Visualization of spatiotemporal dynamics of human glioma stem cell invasion[J]. Mol Brain, 2019, 12(1):45.doi:10.1186/s13041-019-0462-3.
[35] NEVE A, SANTHANA KUMAR K, TRIPOLITSIOIT D, et al. Investigation of brain tissue infiltration by medulloblastoma cells in an ex vivo model[J]. Sci Rep, 2017, 7(1):5297. doi:10.1038/s41598-017-05573-w.
[36] BODEA G O, BLAESS S. Organotypic slice cultures of embryonic ventral midbrain:a system to study dopaminergic neuronal development in vitro[J]. J Vis Exp, 2012, 59:e3350. doi:10.3791/3350.

基金

国家重点研发计划项目资助(2018YFC0311005);国家自然科学基金面上项目资助(81473383);国家科技重大专项重大新药创制项目资助(2018ZX09711001-003-019);中国医学科学院医学与健康科技创新工程项目资助(2016-I2M-3-007)
PDF(2570 KB)

Accesses

Citation

Detail

段落导航
相关文章

/